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1. Introduction
Micro-mechanics-based material models such as the Tonge-Ramesh material model1

have the potential to connect processing details like the residual flaw distribution to
simulation capabilities that can be used in the design of next-generation armor sys-
tems, with the ultimate goal of reducing the cost and lead time for developing new
capabilities. These goals require an understanding of the performance of these ad-
vanced material models under conditions relevant for simulating ballistic impact
events. The papers that initially presented the model demonstrated that the model
can be used for impact events where there is moderate deformation of the materials
using a material point method numerical scheme.1,2

The model may be used for both nonpenetrating impact events, such as those inves-
tigated by Tonge and Ramesh, and impact events with very large deformations such
as long-rod penetration. Since nonpenetrating impact events were addressed in the
initial articles, this work focuses on the behavior of the model for events with large
amounts of projectile penetration.

This report begins by summarizing the Tonge-Ramesh material model including
both the original 2-surface-distortion/compaction model for granular flow and a
more recent single-surface granular flow model. Following this summary, the results
from the Southwest Research Institute (SwRI) effort incorporating the model into
the EPIC finite element code are summarized, including their findings regarding the
limitations of the model. After presenting background on the various iterations of
the Tonge-Ramesh model, 2 long-rod test problem geometries are discussed. Simu-
lations of these impact events using a Lagrangian mesh with SPH particle insertion
in ALE3D are used to confirm that the model behaviors observed by SwRI are also
present in an alternative numerical framework. One of the problem geometries is
also simulated using an Eulerian mesh in addition to the Lagrangian simulations to
assess the ability of the model to handle the errors associated with material trans-
port. While this report only tests the updated model in ALE3D, the results should
also apply if the updated model is transitioned to EPIC.

1
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2. Background
The Tonge-Ramesh material model1 is an isotropic micro-mechanics-based damage
model designed for simulating ceramic materials subjected to impact loading. The
original form of the model1 described a material failure process that was initially
dominated by micro-crack growth through a wing-cracking mechanism followed
by granular flow of a comminuted material. Three different material models are
discussed in this report. The models will be referenced using the following terms:

• TR1: This is the original model.

• TR1a: This model uses a smooth single surface to define the yield locus for
the comminuted material.

• TR2: This model is a simplified version of the TR1a model and is described
in detail in Section 3.

For completeness, the TR1 and TR1a models are described in Sections 2.1 and 2.2.

2.1 Original TR Model
The model was cast in a finite deformation framework with a multiplicative split
of the deformation gradient (F ) into an elastic portion (F e) and an inelastic por-
tion (F GP) such that F = F eF GP. The model specifies the Kirchoff stress as
a combination of a deviatoric contribution (τ dev) and a hydrostatic contribution
(psJeI). The deviatoric contribution is linearly proportional to the deviatoric part
of b̄e = J

−2/3
e F eF

T
e :

τ dev = G

(
b̄e −

1

3
tr
(
b̄e
))

. (1)

The shear modulus (G) decreases with damage according to an increased compli-
ance model:

G(D) =

(
G−1

0 +
2D

15
(3Zr + 2Zn − 4Zc)

)−1

. (2)

The constants Zr, Zn, and Zc represent the radial, normal, and coupling compliance
of a single penny-shaped crack in an isotropic elastic medium. They are functions
of only the elastic moduli. The coupling term was added by Tonge and Ramesh,1

while the other terms are based on single-crack work by Grechka and Kachanov.3

A Mie-Grüneisen equation of state is used to define the pressure ps associated with

2
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undamaged material without porosity

ps(J
e, θ) = pH(Je)

[
1− Γ0

2
(1− Je)

]
+ ρ0Γ0 [ec(J

e) + cη(θ − θ0)] . (3)

Here Je is the thermoelastic volume change ratio, Γ0 is the Grüneisen coefficient,
ρ0 is the reference density, cη is the specific heat, θ is the temperature, ec is the cold
energy associated with compression to Je, and pH is the Hugoniot pressure given
by

pH(Je) =

{
ρ0C2

0 (1−Je)

(1−S(1−Je))2
Je < 1.0

ρ0C
2
0(1− Je) otherwise.

(4)

Damage is incorporated into the bulk modulus according to

K(D) =
(
K−1

0 +D (Zn + 4Zc)
)−1

. (5)

Based on the damaged bulk modulus, the pressure, including the effects of damage,
the nonlinear equation of state, and temperature, is

ps(J
e, θ,D) =

K(D)

K0

(
pH(Je)

[
1− Γ0

2
(1− Je)

]
+ ρ0Γ0 [ec(J

e) + cηθ]

)
. (6)

The damage variable D is computed from the growth of a distribution of microc-
racks

D =

Nbins∑
k

ωk (sk + lk)
3. (7)

Here ωk is the number density of flaws within a family (or bin) of flaws. These flaws
are represented by an initial flaw size, sk, and have grown an additional length, lk.
The flaw growth rate depends on the local stress intensity factor, KI , at the crack
tip according to

l̇ =
Cr
αc

(
KI −KIC

KI − 0.5KIC

)
. (8)

Once damage reaches a critical level, Dc, the granular flow phase of the material
model is activated.

In the granular flow phase, there is a distortional yield surface written in terms of
the Kirchoff stress (τ ) defined by

f(τ ) =
√
τ dev : τ dev − Y + A

(
tr(τ )√

3
−B

)
= 0. (9)

3
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The model assumes associated flow to determine the direction of inelastic deforma-
tion. The rate of inelastic deformation is determined by assuming linear viscoplastic
behavior parametrized by a relaxation time τGP. The associated flow for the distor-
tional mechanism introduces porosity. To account for pore collapse, an additional
yield surface that depends on the pressure (P = −tr(σ)/3), distension (JGP), and
total volume change ratio (J)

fφ(P, JGP , J) =


P

Pc−P0
− P0

Pc−P0
exp

(
− Pc−P0

2P0(J
GP
0 −1)

(JGP − JGP
0 )

)
P < P0

(JGP − 1)− (JGP
0 − 1)J2

(
Pc−P
Pc−P0

)2
P0 ≤ P < Pc

JGP − 1 Pc < P

. (10)

Numerically these 2 mechanisms are solved sequentially. The distortion mechanism
is computed first, introducing porosity, followed by a compaction step where the
porosity is reduced. This sequential solution procedure, while reasonable from an
operator-splitting perspective, introduces errors when large-strain increments are
introduced for loading steps near the intersection of the 2 yield surfaces. The source
of the error is shown in Fig. 1. Starting from point A, which resides on the distortion
yield surface, an increment in deformation results in a trial stress located at point B.
From point B, the return algorithm for the distortion mechanism returns the stress to
point C. The pressure at point C can be arbitrarily large because it does not account
for pore collapse. The pressure could be so large that the Mie-Grüneisen equation
of state cannot be inverted to separate the elastic volumetric deformation from the
inelastic volume deformation. From point C, the pore compaction return algorithm
takes the stress from point C to point D. The correct return location should be point
E. When testing the material model in the EPIC computational code,4 a failure to
invert the Mie-Grüneisen equation of state caused a simulation to fail at an impact
velocity of 4,500 m/s.

4
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Fig. 1 Schematic of error introduced by solving the distortion flow first (A-B-C) followed by
the compaction (C-D). The correct return location is E.

2.2 TR Model with a Smooth Granular Flow Yield Surface
To facilitate comparisons with other ceramic failure models, such as Johnson–
Holmquist–Beissel (JHB),5 a unified yield surface model was incorporated to rep-
resent both the compaction and dilatation of the comminuted material using a single
surface in terms of the Lode invariants. This variant of the model is referred to as
TR1a.

For a Cauchy stress tensor,σ, with a deviatoric part, s = σ+pI , the Lode invariants
are

r =
√
s : s, (11)

z =
1√
3

tr(σ), (12)

and, sin 3θ =
J3

2

(
3

J2

)2/3

. (13)

5
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The yield function6 is written as

f(r, z, θ, γp, ε
v
p) = Γ(θ)2 1

2
r2 − Ff (z, γp) |Ff (z, γp)|Fc(z, εvp) (14)

Ff (z, γp) =

(
µ(γp)

µ0

)(
a1 − a3 exp

(
a2

√
3z
)
− µ0

√
3z
)

(15)

Fc(z, ε
v
p) =

1− (κ(εvp)−
√

3z)
2

(κ(εvp)−X(εvp))
2 if

√
3z < κ

1 otherwise
(16)

µ(γp) = µ1 + (µ0 − µ1) exp (−µ2γp) (17)

X(εvp) = p1

(
p0 +

1

2

(
ln(p3 + p2ε

v
p)−

∣∣ln(p3 + p2ε
v
p)
∣∣)) (18)

κ(εvp) = p4X(εvp). (19)

The plastic flow direction is

M = α(N dev + βN iso). (20)

Here N dev and N iso are the deviatoric and isotropic parts of yield surface normal,
β is an input parameter (β ≤ 1), and α is a normalization parameter to ensure
that M : M = 1. This granular-flow model uses the multistage return algorithm.7

For all of the cases investigated in this work, the Lode angle dependence is turned
off and Γ(θ) = 1. In this form of the model, the rate independent solution to the
plasticity problem is tracked in addition to the rate dependent solution to provide a
more accurate integration of the viscous relaxation model.8

2.3 Demands Placed on a Constitutive Model by Multiple Host Codes
Modeling and simulation is about providing some insight into an event based on
a reasonable set of assumptions. Different tools for solving the momentum and
energy balance equations, will make different assumptions and stress the mate-
rial models in different ways. This work focuses on the Tonge-Ramesh model in
ALE3D, which provides options to use a fully Lagrangian description of the mate-
rial or introduce varying degrees of advection up to fully Eulerian calculations. For
a material model, a finite deformation Lagrangian formulation is the least stressing
condition, because the material history is accurately tracked.9 In advecting calcula-
tions, the relative motion between the material and the mesh can corrupt the history
variables that are carried with the material. Some mechanism must be introduced to

6
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deal with the massive material distortion that will eventually distort a Lagrangian
mesh so severely that the accuracy is lost, elements can invert, and a simulation
will crash. This work discusses the performance of the Tonge-Ramesh model in
a long-rod impact problem for both Eulerian calculations and Lagrangian calcula-
tions with conversion of distorted elements to Smoothed Particle Hydrodynamics
(SPH) particles.

2.4 Prior Evaluations of the Model
SwRI implemented the Tonge-Ramesh (TR1) model into the finite element code
EPIC and performed a similar evaluation.4 EPIC is a Lagrangian finite element code
with various erosion algorithms to address highly distorted elements. In simulations
of various impact configurations, they concluded that the material model (TR1) was
relatively robust but slow compared to other models like the JHB10 model. Of all
the simulation runs that they performed, only an impact at 4,500 m/s failed to run
to completion.

Additional documentation of the TR1 and TR1a models is available in the user
manual for the material model.11

3. Development of a Faster More Robust Version of the Model
(TR2)

This section presents a second generation of the Tonge-Ramesh material model
(TR2) with some simplifications and enhancements to ensure a more robust solu-
tion especially in the presence of advection errors. Even with these improvements,
significant advection of material prior to failure will cause problems due to the
smearing of the local flaw distributions.

An initial analysis of the TR1 and TR1a models indicated that there were 4 areas
where a significant increase in execution speed or robustness may be possible with-
out compromising the physics of the problem. They were in the following areas:

• The use of a finite deformation framework, in particular defining the devia-
toric part of the elastic stresses in terms of b̄e

• The inversion of the Mie-Grüneisen equation of state

• The granular flow return algorithms

7
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• Tracking all 9 components of symmetric rank 2 tensors in 3 dimensions when
only 6 components are needed

The finite deformation framework that uses b̄e to define the deviatoric elastic re-
sponse is important for polymer materials, where large elastic strains are possible,
but may be unnecessary for ceramic materials. By assuming constant moduli during
a timestep, we can eliminate the nonlinear solve used to invert the Mie-Grüneisen
equation of state after computing the stress satisfying the projection back to the
yield surface.

3.1 Elastic Response
The model uses an incremental formulation where the shear modulus is constant
and the bulk modulus is given by the Mie-Grüneisen equation of state. It is shown
here for completeness:

η = 1− ρ0

ρ
(21)

Us =
C0

1− s1η − s2η2 − s3η3
(22)

dUs
dη

=
C0 (s1 − 2s2η − 3s3η

2)

(1− s1η − s2η2 − s3η3)2 (23)

Ph = ρ0U
2
s η (24)

dPh
dη

= ρ0U
2
s + 2ρ0Us

dUs
dη

η (25)

p = Ph (1− 0.5Γ0η) + ρ0Γ0e (26)

Ktherm =
dPh
dη

(1− 0.5Γ0η)− 0.5Γ0Ph (27)

Kise = Ktherm + pΓ0. (28)

To simplify the implementation, the moduli are assumed constant over a time-step.
The stress and internal energy are integrated in time; the temperature is not calcu-
lated. It can always be estimated from the total internal energy in a post processing
step. For simulations using explicit time-stepping schemes, this is a reasonable ap-
proximation. Figures 2 and 3 demonstrate that while the constant modulus assump-
tion does introduce some error in to the pressure and energy calculations, the solu-
tion converges linearly with the size of the strain increment and is the error small for
strain increments of 0.01. Using equation-of-state parameters that are representative

8
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of boron carbide and a single element driver, the pressure at a logarithmic volume
strain of –0.1 was 29.46 GPa, when using 1,000 time increments. The associated
stored elastic energy per unit mass was 0.5607 MJ/kg. When using a single time
increment, the computed pressure is 23.22 GPa, and the associated strain energy
per unit mass is 0.921 MJ/kg. This represents an error of 22% in the pressure and
81% in the strain energy per unit mass when a single step is used relative to us-
ing 1,000 steps to obtain a logarithmic volume strain of 0.1. A logarithmic volume
strain increment of 0.1 with the associated increment in pressure of nearly 30 GPa is
very large and one should only expect a constitutive model to produce a reasonable
answer; one should not expect an accurate pressure or strain energy measure with
such a large increment in volume strain.
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Fig. 2 Error in the pressure calculation introduced due to a consent modulus assumption for
a Mie-Grüneisen equation of state for logarithmic volume strain increments up to 0.1 and
logarithmic volumetric strains of 1
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Fig. 3 Error in the energy calculation introduced due to a consent modulus assumption for
a Mie-Grüneisen equation of state for logarithmic volume strain increments up to 0.1 and
logarithmic volumetric strains of 1

3.2 Volume Preserving Inelastic Flow
The model allows for traditional volume preserving plasticity with a linear-hardening
law and linear rate dependence. The yield surface is defined by

fJ2(σ, εp) = ||σdev|| − (Hεp + τ0). (29)

Here H is the plastic hardening (or softening) modulus, εp is the accumulated plas-
tic strain due to this deformation mechanism, and τ0 is the initial shear strength.
Optionally, a relaxation time can be provided for a Duvaut–Lions overstress vis-
coplasticity model.

3.3 Damage Model
The model uses an interacting micro-crack model based on a wing-cracking mech-
anism and handles the crack interactions using an Eshelby type self-consistent ap-
proach.1 The effective stress in the neighborhood of a crack σe depends on both the
macroscopic stress (Gauss point or material point stress, σ) and the damage level.

10
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Micro-crack growth is driven by the stress intensity factor (KI) at the crack tips,
which depends on both a wedging force Fw and the transverse stress normal to the
wing crack faces

KI =
Fw√

π (l + 0.27s)
+ σe22

√
π (l + sin(φ)s). (30)

The crack growth velocity is given by

l̇ = vm

(
KI −KIC

KI + 0.5KIC

)
. (31)

Here vm is the maximum crack growth velocity. This performs the same role as
Cr/αc in Eq. 8 but avoids the need to compute the Rayleigh wave speed at each
timestep.

The crack growth velocity is a nonlinear function of the wing crack length. To
minimize errors associated with finite-sized timesteps and promote smooth crack
growth, we use the following semi-implicit scheme to update the crack length:

ln+1 = ln + ∆tl̇(ln+1,σn, Dn, sn+1). (32)

The inputs σn, Dn, and sn+1 are the stress at the end of the previous timestep,
damage at the previous timestep, and starter flaw size (which is a constant); these
are all known at the start of the crack growth calculation. This nonlinear equation
for ln+1 is solved using the TOMS 748 algorithm12 implementation in the Boost
C++ numerical library for each flaw family (or bin).

The default behavior of the updated model uses micro-macro scale consistency to
determine the amount of inelastic deformation due to the microcrack growth. In-
elastic deformation is allowed in the flow direction associated with granular flow
(M , defined in Eq. 50) with a magnitude (λD) such that the energy dissipated is
equal to the additional surface energy added per unit volume due to micro crack
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growth.

∆Ψmicro = πγs
∑
k

ωk
(
(sn+1
k + ln+1

k )2 − ((snk + lnk )2)
)

(33)

∆Ψmacro = σ : ∆λDM (34)

σ = σtr − C : ∆λDM . (35)

The stress at the end of the damage increment depends on the elastic moduli (C),
trial stress (σtr), and the increment in inelastic deformation associated with damage
growth (∆λDM ). The direction of inelastic deformation (M ) is determined by
projecting the trial stress back to the granular flow yield surface. This surface may
be much smaller than the current stress causing damage growth. However, the return
algorithm for granular flow was designed to handle large trial stresses relative to
the yield surface. Equating the microscale energy dissipation (∆Ψmicro) with the
macroscale dissipation (∆Ψmacro) results in a quadratic equation for the magnitude
of the increment in granular flow associated with damage growth

∆Ψmicro = σtr : ∆λDM − (C : ∆λDM) : ∆λDM (36)

∆λD =
(σtr : M)−

√
(σtr : M )2 − 4 (M : C : M) ∆Ψ

2 (M : C : M )
. (37)

The legacy behavior, where the moduli are reduced with damage growth, is re-
covered by setting the parameter GPRefStress<0. While reasonable for tensile
loading within the linear regime, the legacy behavior is questionable under large
compressive loads. Particularly, plate impact experiments conducted with a shock-
release-reshock loading have suggested that the elastic wave speed does not change
in boron carbide after the development of damage under uniaxial strain loading.5

This new energy-based behavior introduces stress relaxation that will appear to re-
duce the bulk modulus in tension and provide bulking in compression.

3.4 Granular Flow
The 2-surface granular flow model implemented in the original version of the Tonge-
Ramesh model is particularly inefficient because the intermediate solution for the
pressure after the linear Drucker–Prager solve can be unreasonably large. The sin-
gle surface model avoids this issue, but the multi-stage return algorithm used for
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the projection back to the yield surface was not suitable for arbitrarily large strain
increments.13

3.4.1 Yield Surface
The yield function6 is written in terms of the Lode invariants of the stress r, z, and
θ. History dependence is addressed by defining 2 history variables that are functions
of the inelastic strain rate due to granular flow (εGP). These separate the volumetric
component of the inelastic strain (εvp =

∫ t
0

tr(ε̇GP)dτ ) from the deviatoric component
(γp =

∫ t
0
||dev[ε̇GP]||dτ ). The yield function is similar to the one used in the TR1a

model. The differences between this form and the TR1a form are in the Lode angle
dependence (r̄(θ)), and the parameter a3 was removed in favor of placing z0 inside
the exponential. Additionally the changes in the use of the history variables make
the form of the model slightly more general.

f(r, z, θ, γp, ε
v
p) =

1

2
r2 − r̄2(θ)Ff (z, γp) |Ff (z, γp)|Fc(z, εvp) (38)

Ff (z, γp) = a1 − a1 exp
(
a2

√
3(z − z0)

)
− a4

√
3(z − z0) (39)

Fc(z, ε
v
p) =

1− (κ(εvp)−
√

3z)
2

(κ(εvp)−X(εvp))
2 if

√
3z < κ

1 otherwise
(40)

µ(γp) = µ1 + (µ0 − µ1) exp (−µ2γp) (41)

z0(γp) = z1
0 +

(
z0

0 − z1
0

)
exp (−µ2γp) (42)

a2 =


µ−a4
a1

if a1 > 0

0 otherwise
(43)

X(εvp) = p1

(
p0 +

1

2

(
ln(p3 + p2ε

v
p)−

∣∣ln(p3 + p2ε
v
p)
∣∣)) (44)

κ(εvp) = p4X(εvp). (45)

A valid yield surface requires the following:

• µ ≥ a4

• a1 ≥ 0, a1 = 0 is only valid if a4 > 0

• a4 ≥ 0
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• X < z0

• 0 ≤ p4 < 1

• p3 > 0

• p1 > 0

The yield surface under triaxial compression (σ1 ≤ σ2 = σ3) is illustrated in Fig. 4.
The yield surface parameters used to generate this plot were chosen to illustrate
the different features of the model and are not representative of actual material
parameters.
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√
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3

Fig. 4 Meridional profile of the granular material yield surface showing the effect of important
input parameters
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The Load angle dependence follows a modified Reuleaux profile, which enables an
analytic return in the θ direction,14

b̄ =
r̄2
e − r̄e + 1

2r̄e − 1
(46)

ā = b̄− r̄e (47)

ξ =
π

6
− θ − arcsin

(
ā sin(5π/6 + θ)

b̄

)
(48)

r̄(θ) =
√
ā2 + b̄2 − 2āb̄ cos(ξ). (49)

Here r̄e is the ratio of the triaxial tensile strength to the triaxial compressive strength.
This ratio must be greater than 0.5 and no more than 1.0. Nonlinear Drucker–Prager
behavior is recovered when r̄e = 1. Figure 5 shows the normalized octahedral
profile as the parameter r̄e is changed. There is an edge under triaxial extension.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.0

0.5

0.0

0.5

1.0
Yield surface profile

r̄e =0.51

r̄e =0.7

r̄e =0.9

Principal stresses

Fig. 5 Normalized octahedral profile of the granular material yield surface showing the effect
of the parameter r̄e

The plastic flow direction is

M = α(N dev + βN iso). (50)
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Here β is a parameter between 0 and 1 that controls the degree of nonassociativity
in the flow direction,N is the normal to the yield surface (with isotropic component
N iso and deviatoric component N dev), and α is a normalization to satisfy ||M || =
1. For associative flow set β = 1. The edge and vertex cases are addressed by using
a closest point projection in an appropriately mapped energy space. This definition
of the flow direction (M ) requires an implicit solution of the plasticity return. The
algorithm is discussed in Section 3.7.1.

3.4.2 Rate Dependence
The original Tonge-Ramesh material model used a Duvaut–Lions viscoplasticity
model with a constant relaxation time τGP . The linear viscosity model is a reason-
able first approximation, but a Bagnold granular gas scaling model15,16 is able to
incorporate additional physical processes. This scaling relationship arises from a
momentum balance when the granular flow is behaving like a gas. When the pri-
mary momentum transfer mechanism between particles in the granular flow is brief
particle collisions, the shear strain rate γ scales with the relative particle density ρ̄,
particle size d, particle coefficient of restitution e, the solid material density ρ0, and
the shear stress τ

γ̇ ∝
(

1− ρ̄1/3

ρ̄1/3

)(
1

d

)√
6τ

e(1 + e)ρ0π
. (51)

The model uses this relationship as a guide and assumes a relationship between the
inelastic deformation rate (which is not necessarily volume preserving) and the total
overstress (which is not necessarily purely deviatoric)

ε̇ ∝
(

1− ρ̄1/3

ρ̄1/3

)(
1

d

)√
6

e(1 + e)ρ0π
G
C−1 : (σ − σqs)√
||σ − σqs||

. (52)

The particle size (d) and the relative packing density (ρ̄) are functions of the history
variables

d =

(
lk>2sk∑
Nbins

ωk

)1/3

(53)

ρ̄1/3 = exp(−εv/3). (54)
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To facilitate writing the constitutive model as a collection of nondimensional terms,
we define a reference stress (σref), reference relative density ρ̄ref, and reference par-
ticle size dref. From these reference quantities, the coefficient of restitution of the
particles during a collision and the material density, a reference strain rate can be
computed

ε̇ref = G

(√
6

e(1 + e)ρrefπ

)(
1− ρ̄1/3

ref

ρ̄
1/3
ref

)(
1

dref

)
G−1σref√

σref
. (55)

Using these reference quantities, the strain rate equation can be written as the prod-
uct of dimensionless groups

ε̇ = ε̇ref

(
G

σref

)(
1− ρ̄1/3

ρ̄1/3

ρ̄
1/3
ref

1− ρ̄1/3
ref

)(
1

d

dref

1

)
C−1 : (σ − σqs)√
||σ − σqs||/σref

. (56)

The Bagnold scaling relationship was derived for granular gasses15,16 and breaks
down as the relative density of the granular material approaches 1 (ρ̄ → 1) to ad-
dress this case we only compute the strain rate using a maximum value of ρ̄ref for
ρ̄.

It is computationally convenient to write the strain rate sensitivity as a Duviont-
Lions viscous relaxation model

ε̇GP =
1

τGP
C−1 : (σ − σqs) (57)

1

τGP
=

(
Gε̇ref

|σref|

)(
(1− ρ̄ 1

3 )ρ̄
1
3
ref

ρ̄
1
3 (1− ρ̄

1
3
ref)

)(
dref

d

)√(
|σref|

||σ − σqs||

)
. (58)

If ρ̄ > ρ̄ref, the fraction involving the relative packing density terms is evaluated to
1. The relative packing density scaling can be disabled by setting ρ̄ref < 0 in the
input. Similarly, the particle size scaling is disabled by setting dref < 0 or running
the calculation is run without damage growth.

The material model has 3 options for the rate dependence of the granular flow
process: rate independent (GPRefStrainRate=0), Bagnold granular gas scal-
ing15,16 (GPRefStrainRate>0), and a linear viscosity model (GPRefStrainRate<0).
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The linear viscosity model is

1

τGP
=
G|ε̇ref|
|σref|

. (59)

3.5 TR2 Material Model Parameters
The parameters for the TR2 model are summarized in Table 1.
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Table 1 Material parameters in TR2 model

Keyword Symbol Units Meaning
MGC0 C0 L/T Bulk sound speed
MGGamma0 Γ0 . . . Grüneisen constant
MGS1 s1 . . . Linear term in shock speed relation
MGS2 s2 . . . Quadratic term in shock speed relation
MGS3 s3 . . . Cubic term in shock speed relation
ShearModulus G P Shear modulus
rho_orig ρ0 M/L3 Reference density

FlawDensity η 1/L3 Number density of flaws
MinFlawSize smin L Minimum flaw size in Pareto distribution
MaxFlawSize smax L Maximum flaw size in Pareto distribution
FlawDistExponent α . . . Exponent in the Pareto distribution
RandomSeed . . . integer Seed for randomization
RandomMethod . . . integer Set randomization method less than 0 to disable
BinBias . . . . . . Skews flaw binning for methods 6 and 7

FlowStress τ0 P Initial J2 flow stress (set less than 0 to disable)
HardeningModulus H P Hardening modulus for J2 flow
J2RelaxationTime T Viscous timescale for J2 flow

KIc KIC PL1/2 Critical stress intensity for crack growth
FlawFriction µ . . . Friction across the crack faces
FlawAngle φ radians Flaw orientation
FlawGrowthExponent γc . . . Exponent for crack growth law
FlawGrowthVel vm L/T Maximum crack speed
CriticalDamage Dc . . . Damage to activate granular flow

GPRefStrainRate ε̇ref 1/T Granular flow reference strain rate
GPRefStress σref P Granular flow reference stress
GPRefRhoBar ρ̄ref . . . Reference packing density
GPRefSize dref L Reference particle size
GFMSm0 µ0 . . . Initial low pressure slope
GFMSm1 µ1 . . . Final low pressure slope
GFMSm2 µ2 . . . Slope change rate with strain
GFMSp0 p0 . . . Crush curve parameter
GFMSp1 p1 P Crush curve parameter
GFMSp2 p2 . . . Crush curve parameter
GFMSp3 p3 . . . Crush curve parameter
GFMSp4 p4 . . . Shear pressure coupling for pore collapse
GFMSa1 a1 . . . Extrapolation of the a4 slope to z0
GFMSz00 z00 P Initial granular hydrostatic tensile strength
GFMSz01 z10 P Final granular hydrostatic tensile strength
GFMSa4 a4 P High pressure slope
GFMSBeta β . . . nonassociativity for granular flow
GFMSPsi r̄e . . . Strength reduction ratio for triaxial extension

In this new model the parameters vm, ε̇ref, σref, ρ̄ref, and dref are new. Many redundant
parameters and switches were removed. The form of the yield surface softening is
different between TR1a and TR2; however, for a granular flow response that is
independent of γp, the yield surfaces can be made similar
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µTR2 = aTR1a
2 aTR1a

3 + µTR1a (60)

aTR2
4 = µTR1a (61)

aTR2
1 =

aTR1a
1 if aTR1a

2 6= 0

0 otherwise
(62)

aTR1a
1 = aTR1a

3 exp(aTR1a
2 zTR2

0

√
3) + µTR1azTR2

0

√
3. (63)

3.6 TR2 History Variables
In addition to removing redundant parameters and switches, the new model uses
fewer history variables. The history variables that are specific to this material model
are listed in Table 2. The subscripted flaw family information is repeated for the
number of flaw families that are included in the problem. The total number of his-
tory variables is 7 plus 3 multiplied by the number of flaw families.

Table 2 Model specific history variables

Name Symbol Units Meaning
BulkModulus K P Bulk modulus
ShearModulus G P Shear modulus
damage D . . . Damage variable
plasticStrain εp . . . Plastic strain due to volume preserving plasticity
plasticEnergy . . . P Energy absorbed by volume preserving plasticity
epsv εvp . . . Inelastic volume strain due to granular flow
gam γp . . . Inelastic deviatoric strain due to granular flow

flawNumber_k ωk 1/L3 Number density of flaws for bin k
starterFlawSize_k sk L Representative flaw size for bin k
wingLength_k lk L Wing crack length for bin k

In addition to the model specific history variables listed in Table 2, the material
model tracks the stored strain energy per unit mass (eelas) and the dissipated energy
per unit mass (eplas). These are integrated using a first-order accurate scheme
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∆etot =
σn+1 : ∆ε

ρ
(64)

∆σ = σn+1 − σn (65)

∆εe =
∆σiso

3K
+

∆σdev

2G
(66)

∆eelas =
σn+1 : ∆εe

ρ
(67)

∆eplas = ∆etot −∆eelas. (68)

Here σn is the stress entering the material subroutine and ∆ε is the increment in
strain. The stored strain energy per unit mass is stored in the sse history variable,
and the dissipated energy per unit mass is stored in the spd history variable.

3.7 Numerical Implementation
This material model is implemented as an Abaqus User Material and assumes that
the stress and strain increment coming into the material model interface accounts for
objectivity requirements through the use of an objective rate or the an “ unrotated”
configuration. Either approach can be used because there are no tensor internal state
variables in the model.

Since rotations are not considered in the constitutive model and there are no inter-
nal tensor variables, all stress or strain tensors are symmetric second-order tensors
allowing significant improvements in associated tensor operations. In particular,
specialized formulas are used to determine the eigen values, eigen projectors,17 and
inverse when needed.

The damage growth calculation uses the stress at the beginning of the timestep.
The volume preserving plasticity mechanism is computed first using a radial return
algorithm. The output of the volume preserving plasticity calculation used as the
trial stress for the granular flow calculation when granular flow is active. The gran-
ular flow algorithm is more involved due to the pressure and possible Lode angle
dependence. The numerical approach is described in the following section.

3.7.1 Rate Independent Projection
The modified Reuleaux profile14 has a hydrostatic tensile vertex, edges in triaxial
compression, and the remaining surfaces are smooth nonplanar surfaces. The input
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to the return algorithm is a trial stress (σtr), the Poisson’s ratio (ν), the parameters
describing the current location of the yield surface (a1, a2, a4, r̄e,X , and κ), and the
parameter determining the degree of nonassociativity in the plastic flow direction
(β). From the trial stress, the Lode coordinates (ztr, rtr, and θ tr) and eigen projectors
(P 1, P 2, and P 3) are calculated. After this, the return algorithm checks the hy-
drostatic tensile vertex, then attempts returning to the smooth nonplanar surface. If
the nonplaner return causes the stress to change sextants (θ < −π

6
), then the return

should be to the triaxial compression edge.

The modified Reulaux profile reduces the number of unknowns in the nonplanar
stress return to only the hydrostatic pressure

ζ =
1

β

√(
1− 2ν

1 + ν

)
(69)

rc(z) =

Ff (z)
√

2Fc(z) if Fc > 0 and Ff > 0

0 otherwise
(70)

bT (z) =

√
(ārc(z))2 + r2

tr − 2ārc(z)rtr cos(5π/6 + θtr) (71)

b(z) = b̄rc(z) (72)

L2(z) = (bT (z)− b(z))2 + (ζz − ζztr) . (73)

The closest point return in the energy norm is zCP where zCP minimizes L2.14,18 The
nonlinear minimization problem is solved using Brent’s algorithm19 implemented
in the Boost C++ library. After computing zCP, the radial coordinate (rCP) and Lode
angle θCP are given by

ξCP = arcsin

(
rtr sin(5π/6 + θtr)

bT (zCP)

)
(74)

r̄CP =
√
ā2 + b̄2 − 2āb̄ cos(ξ) (75)

rCP = r̄CPrc(zCP) (76)

θCP = arccos

(
ā2 + r̄2

CP − b̄2

2ārCP

)
− 5π

6
. (77)

If the computed Lode angle for this return is outside of the original sextant (θCP <

−π/6), then the return will be to the triaxial compression edge (θCP = −π/6). The
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minimization problem for this return case is

L2
e =

(
rtr cos

(π
6

+ θtr

)
− rc(z)

)2

+ (ζz − ζztr)
2 . (78)

Once the Lode coordinates are computed, the return stress is reconstructed from the
principal stresses and the eigen projectors of the trial stress (P 1, P 2, and P 3)

σ1 =
zCP√

3
+
rCP√

2

(
sin(θCP)√

3
− cos(θCP)

)
(79)

σ2 =
zCP√

3
− rCP sin(θCP)

√
2

3
(80)

σ3 =
zCP√

3
+
rCP√

2

(
sin(θCP)√

3
+ cos(θCP)

)
(81)

σqs = σ1P 1 + σ2P 2 + σ3P 3. (82)

This return does not account for the evolution of the internal state variables dur-
ing the timestep. The nonhardening return algorithm can be used as the basis for
a consistent hardening solution.18 At the end of a timestep using a consistent algo-
rithm, the stress lies on the yield surface that has been updated based on the strain
increment during the timestep

f(σn+1, ε
p
vn+1, γpn+1) = 0. (83)

To generate a consistent hardening solution we iteratively solve

y(η) = δεpv − ηδεpv0 = 0. (84)

Here δεpv0 is the increment in εpv computed using the nonhardening return algorithm
and εpvn. The quantity δεpv is computed from the nonhardening return algorithm after
updating the history variables according to

εpv = εpvn + ηδεpv0. (85)

For a hardening process, the solution to Eq. 84 is bounded between 0 and 1. A
known bounding range for the solution enables solution algorithms that are guaran-
teed to converge.18 We do not try to generate a consistent solution that accounts for
possible softening due to evolving γp.
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Figure 6 illustrates the difference in convergence behavior when the consistent re-
turn is used. These simulations are for a single element that starts with an inelastic
volume strain of 0.6, and then the porosity is compressed out of the material. There
is minimal error in the pressure solution for the consistent algorithm even with a
strain increment of 0.1. The faster algorithm that does not account for the evolution
of the yield surface during the timestep does not seem to converge until a strain in-
crement of 0.001. Both algorithms converge to the same pressure-volume response
at a strain increment of 0.001 as shown in Fig. 7.
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Fig. 6 Comparison of single element uniaxial strain compression simulations from an initially
distended state showing the effect of strain increment size
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Fig. 7 Pressure-volume response for an initially distended material for uniaxial strain com-
pression with a strain increment of 0.001 for the consistent algorithm and the faster nonhard-
ening algorithm

3.7.2 Rate Dependence
The numerical implementation of the granular flow viscoplasticity model relies on
the ability to project an arbitrary trial stress (σtr) onto the quasi-static yield surface
(providing the value for σqs). Once the projection onto the quasi-static yield surface
is defined, the stress at the end of the timestep is

σn+1 =
σtr +

(
∆t
τGP

)
σqs

1 + ∆t
τGP

. (86)

This procedure20 to update the stress only requires tracking the current stress as a
history variable and is more robust with respect to advection errors (provided that
σqs can be computed reliably) than the algorithm that explicitly tracked σqs as an
extra set of history variables. When using the Bagnold-type granular flow rate, the
relaxation time τGP is approximated using the trial stress as

1

τGP
=

(
Gε̇ref

|σref|

)(
(1− ρ̄ 1

3 )ρ̄
1
3
ref

ρ̄
1
3 (1− ρ̄

1
3
ref)

)(
dref

d

)√(
|σref|

||σtr − σqs||

)
. (87)
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This approximation over estimates the quantity ||σ−σqs|| by a factor of
√

1 + ∆t/τ GP

to avoid solving a quintic equation numerically. The extra cost of numerically solv-
ing the quintic is not justified because the backward Euler stress update algorithm
is only first-order accurate.20 Using the trial stress in the calculation instead of the
stress from the previous timestep prevents division by zero. For global timesteps
that poorly resolve the granular flow timescale τGP, this algorithm will overestimate
the rate of stress relaxation. However, for a decaying function, like the overstress in
Eq. 86, the backward Euler update overestimates the updated function value. The
updated stress will be outside the yield surface at the end of the timestep avoiding
saw tooth behavior caused by over estimating the increment in plastic strain.

3.8 Timing Results
The speed of the improved model was measured by simulating a cube of mate-
rial subjected to simple shear deformation. The cube was meshed with 1,000 el-
ements (10 elements per side) and the simulation was run for 1,000 timesteps
with all displacement degrees of freedom specified. This test compared 3 differ-
ent material models: the original Tonge-Ramesh implementation with a 2-surface
description of the dilatation and compaction surfaces, the single-surface implemen-
tation with the multistage return algorithm, and the improved-single-surface model.
All implementations were compiled without optimizations. The TR1 model took
40.2 µs/zone/cycle to complete the simulation. The TR1a model took 16.8 µs/zone/cycle,
and the improved TR2 model took 4.0 µs/zone/cycle when the consistent solve was
used and 2.3 µs/zone/cycle when it was not. These results indicate that the improved
model is 5–10 times faster than the original implementation. The timing results are
summarized in Table 3. For problems that are dominated by the granular flow part
of the calculation, the TR2 model is significantly faster.

Table 3 Summary of model evaluation times for 1,000 elements simulated for 1,000 timesteps

Model Total model evaluation time
(s)

TR1 165
TR1a 17.6
TR2 4.40

TR2 with consistency correction 4.70
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The basic single-surface return algorithm in the TR2 model seems to be sufficient
for most cases and is faster than using a consistent solution. The uniaxial strain
compaction problem used to demonstrate the difference between the faster and the
consistent solution is expected to be a worst case. This model is intended to solve
problems where the intact material fragments, then porosity is introduced. In these
types of loading there will be some re-compression of the material, but it is not
expected to dominate the problem.

4. Model Evaluation Methods
4.1 Geometry from Prior Experiments
There are experimental data from 2 research groups on penetration of confined
boron carbide by high-density, long-rod projectiles.21,22 Based on these prior ex-
periments, the following 3 experimental geometries were identified to test the per-
formance of the material model for impact velocities from 1,000 to 5,000 m/s:

1) Boron carbide cylinder 19 mm in diameter and 39.6 mm long encased in
4 mm of steel on the top, sides, and bottom. There was a 0.07-mm interference
fit between the confinement and the boron carbide.

2) Boron carbide cylinder 19 mm in diameter and 39.6 mm long encased in
1 mm of steel on the sides with 4 mm on the top and bottom. There was a
0.07-mm interference fit between the confinement and the boron carbide.

3) Boron carbide cylinder 16 mm in diameter and 50 mm long encased in a
1.59-mm-thick Ti6–Al4 sleeve with a 3.175-mm top plate and 12.7-mm bot-
tom plate. The confining sleeve had a slip fit with the target cylinder.

Geometries 1 and 2 used a 2-mm-diameter tungsten rod that was 150 mm long.
Geometry 3 used a 11.43-mm-long tungsten rod that was 0.762 mm in diameter.

4.2 Simulation Mesh
The Lagrangian mesh for geometry 1 is shown in Fig. 8. The mesh for geometry
2 is nearly identical, except elements are removed from the outer circumference
of the cylinder to reduce the wall thickness. There are 2 cells across the projec-
tile radius. In these Lagrangian simulations, distorted elements were converted into
SPH particles according to history variables that would indicate sufficient loss of
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material strength. For steel or tungsten elements, the conversion occurred after the
equivalent plastic strain in the element exceeded 1.0. Within the ceramic material,
elements were converted once the inelastic shear strain (γp) exceeded 0.1.

Fig. 8 Slice view of the initial Lagrangian mesh used for the geometry 1 penetration simula-
tions

The initial mesh for the Eulerian simulations of geometry 1 is shown in Fig. 9. The
projectile is better resolved with 4 elements across the projectile radius. This mesh
attempts to balance limited void material with providing sufficient space for motion
of the target after impact.
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Fig. 9 Representative mesh used for the Eulerian simulations of geometry 1 using 4 elements
across the rod radius

The Lagrangian mesh for geometry 3 is shown in Fig. 10. There are 2 cells across
the projectile radius. Similar particle conversion rules were used for this set of sim-
ulations as for geometries 1 and 2. The short rod and large impact velocity result
in conversion of the projectile material into SPH particles very soon after the im-
pact event occurs. The primary purpose of this series of 3 simulations is to test the
material model at the limits of its region of applicability.
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Boron Carbide

Aluminum

Tungsten

Aluminum

Titanium

Fig. 10 Cut view of the initial mesh used for Lagrangian simulations of geometry 3

4.3 Material Parameters
The baseline material parameters for boron carbide are taken from the original ap-
plication of this model to boron carbide.2 This set of material parameters does not
allow for volume preserving inelastic deformation prior to full damage development
(D ≥ 0.125) and does not limit the strength of the fully damaged material when
sufficient pressure is applied. Because the model only allows Drucker–Prager plas-
ticity with pore compaction, at very high pressures, the failed ceramic can sustain
unreasonably large deviatoric stresses. These baseline material parameters are listed
in the TR1 column of Table 4. To demonstrate sensitivity of the results to the dam-
aged material model, a second set of material parameters were defined based on the
JHB parameters for damaged boron carbide (set B).23 These parameters are listed
in column TR1a in Table 4. Simulations using the TR2 model used parameters that
were equivalent to the TR1a parameters.
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Table 4 Material parameters used in TR1 and TR1a model evaluation

Parameter name TR1 TR1a Parameter name TR1 TR1a
useDamage 1.000e+00 1.000e+00 usePlasticity 0.000e+00 1.000e+00
useGranularPlasticity 1.000e+00 1.000e+00 useOldStress 1.000e+00 1.000e+00
artificialViscosity 0.000e+00 0.000e+00 artificialViscousHeating 0.000e+00 0.000e+00
BulkModulus 2.334e+11 2.334e+11 ShearModulus 1.970e+11 1.970e+11
rho_orig 2.520e+03 2.520e+03 FlowStress N/A 10.206e+9
HardeningModulus N/A 0.0 InitialPlasticStrain N/A 0.000e+00
J2RelaxationTime N/A 0.000e+00 NumCrackFamilies 2.500e+01 2.500e+01
FlawDensity 2.200e+13 2.200e+13 FlawDistType Pareto (2) Pareto (2)
MinFlawSize 1.000e-06 1.000e-06 MaxFlawSize 2.500e-05 2.500e-05
FlawDistExponent 2.600e+00 2.600e+00 RandomizeFlawDist 1.000e+00 1.000e+00
RandomSeed 3.000e+00 3.000e+00 RandomizeMethod 7.000e+00 7.000e+00
BinBias -2.000e+00 -2.000e+00 KIc 2.500e+06 2.500e+06
FlawFriction 6.000e-01 6.000e-01 FlawAngle 1.044e+00 1.044e+00
FlawGrowthExponent 1.000e+00 1.000e+00 FlawGrowthAlpha 5.000e+00 5.000e+00
CriticalDamage 1.250e-01 1.250e-01 MaxDamage 1.260e-01 1.260e-01
MicroMechPlaneStrain 1.000e+00 1.000e+00 IncInitDamage 1.000e+00 1.000e+00
DoFlawInteraction 1.000e+00 1.000e+00 GPTimeConst 7.000e-09 0.000e+00
JLoc 2.000e+00 2.000e+00 GPGranularSlope 8.000e-01 N/A
GPCohesion 3.000e+06 N/A GPYieldSurfType 1.000e+00 N/A
GPPc 1.000e+10 N/A GPJref 2.000e+00 N/A
GPPref 1.000e+08 N/A GPSurfaceType 0.000e+00 1.000e+00
AbsToll N/A 1.0e-12 RelToll N/A 1.0e-08
MaxIter N/A 20 MaxLevels N/A 1
GFMSm0 N/A 0.001 GFMSm1 N/A 0.001
GFMSm2 N/A 0.000e+00 GFMSp0 N/A -1.000e-02
GFMSp1 N/A 1.000e+10 GFMSp2 N/A 1.429e+00
GFMSp3 N/A 5.000e-03 GFMSp4 N/A 7.500e-01
GFMSa1 N/A 288.7e6 GFMSa2 N/A 1.278e-9
GFMSa3 N/A 288.7e6 GFMSBeta N/A 1.0
GFMSPsi N/A 1.0 GFMSJ3Type N/A 0
MGC0 9.600e+03 9.600e+03 MGGamma0 1.280e+00 1.280e+00
MGS1 9.140e-01 9.140e-01 MGS2 0.000e+00 0.000e+00
MGS3 0.000e+00 0.000e+00 MGCv 9.620e+02 9.620e+02
MGTheta_0 2.940e+02 2.940e+02

For geometry 1 and 2, the projectile and confinement were modeled using a Johnson–
Cook plasticity and failure model with the parameters taken from the experimen-
tal paper.22 The metals in simulations of geometry 3 were also modeled using a
Johnson–Cook plasticity and failure model. The tungsten parameters were adapted
from the parameters for geometries 1 and 2 by scaling the density. The other metals
were modeled using library parameters.24
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5. Results
The majority of the simulations with the baseline material model ran to comple-
tion when used with element conversion to SPH particles. The baseline material
model ran in Eulerian mode, but a convergence failure while inverting the Mie–
Grüneisen equation of state halted the simulation after only 1 µs. The Eulerian run
at 1,480 m/s using the TR1a material parameter set ran to 57 µs before crashing due
to a “Q-Stop” error. These errors are generally a symptom of some other mesh tan-
gling or mixed zone issue. The log file from this run showed an invalid deformation
gradient (F ) in the cell that caused the fatal error. The TR2 version of the model
discussed in Section 3 ran the problem to completion. The geometry 3 problems ran
to completion for all impact velocities up to 4,500 m/s. The results of the simula-
tions are presented in Table 5 with the corresponding depth of penetration reported
in the experimental papers.21,22 The material locations at the end of the Lagrangian
simulations of geometries 1 and 2 are shown in Fig. 11. The final material locations
for the Lagrangian simulations of geometry 3 are shown in Fig. 12.

Table 5 Summary of simulation results

Geometry Velocity Material model Simulation type Sim DOP End time Exp DOP
(m/s) (mm) (µs) (mm)

1 1,427 TR1 Lagrange 0 35 6
1 1,427 TR1a Lagrange 6.9 58 6
1 1,480 TR1 Lagrange 0 60 20
1 1,480 TR1a Lagrange 7.9 60 20
1 1,480 TR1 Euler 0 1 20
1 1,480 TR1a Euler 39.2 57 20
1 1,480 TR2 Euler 35.3 60 20

2 1,517 TR1 Lagrange 6.2 60 35
2 2,601 TR1 Lagrange 15.0 25 35

3 1,500 TR1 Lagrange 0 60 11
3 3,000 TR1 Lagrange 2.3 60 22
3 4,500 TR1 Lagrange 4.0 60 26
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1,427 m/s
TR1

1,517 m/s
TR1

2,601 m/s
TR1

1,427 m/s
TR1a

1,480 m/s
TR1

1,480 m/s
TR1a

34 μs

58 μs

60 μs

60 μs

60 μs

25 μs

Fig. 11 Comparison of simulation results for the Lagrangian simulations of geometries 1 and
2 at the end of the simulation

For geometry 1, simulations were run using both the TR1 and the TR1a material pa-
rameter sets for the 1,427- and 1,480-m/s impact velocities. Experimentally, a dwell
to penetration transition was observed between these 2 velocities.22 When using the
baseline material parameters, there is interface defeat at both of these velocities;
however, in calculations using the TR1a material parameter set, there is 6.9 mm of
penetration for the 1,427-m/s impact and 7.9 mm for the 1,480-m/s impact. When
the numerical technique is changed from a Lagrangian mesh with conversion to
SPH particles to a pure Eulerian formulation, the penetration for the 1,480-m/s im-
pact increases to 39.2 mm. One should not observe such a large difference in the
simulation results when the numerical technique is changed. Treatment of failure
and strongly history dependent materials within computational frameworks that can
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simultaneously handle arbitrarily large shear deformations is an ongoing research
area. The meshes used for these simulations are likely too coarse to accurately cap-
ture the failure and localization processes in either the Lagrangian or Eulerian sim-
ulations. However, the goal of this report was to document that the TR1 model and
TR1a model could be run in ALE3D and that a modified model more suitable for
large simulations with advection had been created. Understanding the reason for
the discrepancy between the Lagrangian and Eulerian approaches is a subject for a
different report. Similarly, the material parameters used for this study were chosen
for consistency, not to provide the best fit to the experimental observations.

1,500 m/s

3,000 m/s

4,500 m/s

Fig. 12 Comparison of simulation results for the geometry 3 long rod impact geometry 60 µs
after impact

Geometry 3 was only run using the TR1 model parameters in Lagrangian mode with
conversion to SPH particles. The purpose of the simulation was to demonstrate that
the model would run at impact velocities up to 4,500 m/s. As shown in Fig. 12,
the simulations ran to completion at 60 µs. In the 1,500-m/s simulation there was
interface defeat. The 3,000- and 4,500-m/s simulations showed some penetration
into the boron carbide but much less than the experimentally observed penetration.

The results of the Eulerian simulations of the 1,480-m/s impact using geometry
1 are shown in Fig. 13. To obtain the reported results for the Eulerian simula-
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tions using the TR1a model, the error checking was disabled and the rate depen-
dent granular flow was disabled and replaced with rate independent granular flow.
These limitations are addressed in Section 3. Both the TR1a and the TR2 model
without rate dependence in the granular flow provide similar results. Introducing
rate dependence into the granular flow decreases the amount of penetration. The
TR1a model could not be run in Eulerian mode with the rate dependence because
the results were severely corrupted by advection errors. The TR2 model discussed
in Section 3 is significantly more robust and does not have the same limitations.
The Eulerian simulation results show a significantly narrower penetration channel
than the Lagrangian simulations with conversion to SPH particles. Flash X-ray im-
ages taken during the experiment show a penetration channel that is more consis-
tent with the Eulerian simulations than the Lagrangian simulations, but the reason
for the better agreement is unclear. Eulerian simulations using both the consistent
and the faster version of the TR2 model produce similar results. Simulations us-
ing a finer mesh were also run for the Eulerian case and produced similar results.
A mesh convergence study using the Lagrangian simulations with SPH conversion
was not performed. The SPH conversion algorithm proved to be very computa-
tionally expensive, and the convergence study was not justified based on the SwRI
work demonstrating that the TR1 parameter fit may not be reasonable for impact
problems involving deep penetration.
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TR1a model with parameters fit to follow the JHBB model and rate independent granular flow

TR2 model with parameters fit to follow the JHBB model and rate dependent granular flow

18000 10009500

Density

TR2 model with parameters fit to follow the JHBB model and rate independent granular flow

Fig. 13 Comparison of simulation results for the Eulerian simulations of the geometry 1 long
rod impact problem using the TR1a and TR2 models with material parameters fit to the JHB
set B boron carbide model and an initial impact velocity of 1,480 m/s 50 µs into the simulation

6. Discussion
These simulations demonstrate that the Tonge-Ramesh material model is imple-
mented in ALE3D and can be used to simulate complex penetration problems up to
4,500 m/s. As discussed by Holmquist et al.,4 the TR1 model is relatively robust, but
the efficiency could be improved. The default model parameters do not predict the
correct dwell to penetration transition. The strength of the damaged material is too
high for the baseline case. This is demonstrated by the simulation under predicting
the penetration at 1,480 m/s. The simulations using the TR1a model with parame-
ters fit to the JHB set B boron carbide model demonstrate that reducing the strength
of the damaged material increases the penetration and causes an over prediction
of the penetration depth. Additionally, simulations using the TR1a model with the
JHB set B boron carbide model fit did not predict any dwell at the lower 1,427-m/s
impact velocity where it was experimentally observed. For both the TR1 and TR1a
simulations of geometry 1 at 1,427 m/s, the majority of the ceramic was damaged
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and eligible for granular flow. The difference between the 2 results is due to the
difference in the strength of the fragmented material. This demonstrates that the
TR1 parameters produce a ceramic that has too little resistance to damage but too
much resistance to deformation once it has fragmented. Independent experiments
are needed to calibrate both the intact material strength and the damaged material
strength. Work is underway to develop a new set of boron carbide material parame-
ters that better fit the response of the Pressure Assisted Densification boron carbide
selected as the baseline material for the Materials in Extreme Dynamic Environ-
ments Cooperative Research Agreement. It may be possible to calibrate material
parameters based on the dwell to penetration transition, as was done for the JHB
model,23 but such an approach undermines the usefulness of the confined ceramic
impact experiment as a validation experiment. One should not use the same experi-
mental series for both calibration and validation.

The Eulerian simulations demonstrate that the TR1a and TR2 models can be used
in an Eulerian calculation. The TR2 model is faster and more robust but may not be
suitable for large elastic deformations. Ceramics are generally not subject to large
elastic deformations, and without experimental data to base a model on, there is
little reason to retain the added computational expense of the finite elastic defor-
mation model used in TR1 and TR1a for the elastic response of the ceramic. The
Eulerian simulations showed better agreement with the experimentally measured
penetration depth and the shape of the penetration channel was captured better by
the Eulerian simulations. In general, one expects a Lagrangian calculation to do a
better job of capturing material interface effects and damage propagation. However,
the conversion to SPH particles could be eliminating the strength of the material re-
sulting in a wide-shallow penetration instead of the deep-narrow channel observed
in the experiments.
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7. Conclusion
This report has presented representative ALE3D simulations using the new Tonge-
Ramesh material model.1 The model performs reasonably well under impact load-
ing conditions up to 4,500 m/s. The model can be significantly accelerated by mak-
ing some simplifying assumptions about the material behavior and then optimiz-
ing the material model to take advantage of these assumptions. The updated (TR2)
model is suitable for both Lagrangian and Eulerian simulations and seems to be
efficient enough for large simulation problems.

Since the predictions of a simulation are only as good as the material parameters
used in the simulation, a new set of boron carbide material parameters should be
developed to provide the best fit to existing experimental data. The baseline param-
eters provide an intact material that is too weak (damage grows too easily) and a
failed material that is too strong.
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